<u>Neowine</u>

ALPU-P

Algorithm License Permission Unit

Features

- Cipher Algorithm : Applied AES-128
- Digital Controlled OTP Memory (32Bytes)
- 1.65 ~ 4.8V Operation Voltage
- Built-in POR
- Built-in OSC
- 8 Bytes OTP ROM cell for User Serial
- Two Power Mode(Active, Standby)
- Adjustable Standby Enable Time
- Communication : ART⁽¹⁾ interface (up to 20 kbps)

Applications

- DMB, Navigation
- Mobile Phone, PMP, MP3
- DVR(PVR), DVDP, STB
- Battery
- Etc.(Most of electronic system using u-Processor)

Pin Configuration

General Description

The ALPU-P is strong encryption chip even in turbulent circumstance such as static electricity. Valuable products made with strong encryption can be prevented competitor from being copied with the least expense or efforts and an amount of production can be tracked with a unique serial number in individual chip.

Typical Application

Encryption Flow

Figure 2. Operation Diagram

Note (1) ART : Adaptive Reference Time

ALPU-P

Algorithm License Permission Unit

Contents

- 1. Overview
- 2. <u>I/O PORT</u>
- 3. <u>CLOCK Management</u>
- 4. Power Mode
- 5. Initialization
- 6. <u>Encryption</u>
- 7. <u>Communication Packet Structure</u>
- 8. OTP(One Time Programmable) ROM
- 9. <u>Communication Interface</u>
- **10.** <u>Electrical Characteristic</u>
- 11. <u>Typical Operation Circuit</u>
- 12. Package Information

Neowine

Advanced Product Information

ALPU-P

Algorithm License Permission Unit

1 Overview

The illegal copy products being sold, enterprises have suffered economic injury and the reliability of the product lose public confidence. And also lose one's dignity. ALPU is authentication chip to keep away like this illegal copy. As specialized in the electrical component, the fact that electric current consuming is few is feature. And in order serviceable even in the battery pack, it supports ART(1) 1-Line communication. The ALPU-P is having two kinds of power mode, Standby-Mode and Active-Mode. In case which will be a Standby-Mode, there is not electric current consuming almost and it is suitable to apply with handhelds.

1.1 Feature

Advance chip to prevent illegal copy The 128 bits encryption which applied the AES-128 Reference Operating Voltage : 1.65 ~ 4.8V Communication : ART 1-Line Interface (up to 20 kbps) 8 Bytes OTP ROM cell for User Serial Two Power Mode (Active and Standby) Built-in POR(Power on Reset Built-in OSC(1 MHz Oscillator) Package : TDFN-8L 2mm x 3mm

1.2 Block Diagram

ALPU-P is composed of a digital block and a analog block. Analog block consists of OTP, OSC and POR, Digital block consists of interface, encryption, otp_ctrl and main_ctrl, It does control the OTP, encryption communication and so on through main_ctrl block.

ALPU-P

Algorithm License Permission Unit

1.3 PIN Configuration

1.4 PIN Description

Table	1-1	Package	type	TDFN-8L 2x3
Table	1-1.	1 acrage	type	1 DI IN-0L 2AJ

PIN No.	Pin Name	Description
1	VSS	Ground
2	NC	None Connect
3	VPP	Write : 6.5V Supply for programming OTP cells
		Read : VPP same as VDD for Read
4	VDD	Charge Capacitor
5	NC	None Connect
6	NC	None Connect
7	NC	None Connect
8	DATA(1)	Communication Line

2 PORT

ALPU-P has different I/O types as shown in table 2-1.

Table 2-1. I/O Type

Name	Direction	Description
VSS	PWR	Ground
VDD	PWR	Charge Capacitor
DATA	Bi-direction	CMOS input / Open-Drain Output

Algorithm License Permission Unit

3 Clock Management

3.1 Internal clock

Parameter Internal oscillator is used from all digital blocks. Frequency is 1MHz shown in Table 3-1. Table 3-1. Internal OSC parameter (Ta = 25 °C)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Frequency	f _{OSC}		-	1	-	MHz
Frequency variation	Δf_{OSC}		-	-	10	%
Duty cycle	D		-	50	-	%

3.1.1 Oscillator On/Off

Internal oscillator can be turned on and off. If ALPU-P is in the condition of Standby-Mode, then internal oscillator is not operate, it is turned off low-power.(refer to chapter 4. Power Mode)

4 Power Mode

ALPU-P supports two types of the poser mode. In case of Standby-Mode, internal oscillator do not work so that electric current consuming decreases. To make the Standby-Mode, keep the DATA pin high or low more than 2 seconds. To make Active-Mode, cross the DATA pin from high to low or from low to thing, then it will wake-up.

4.1 Standby-Mode Condition

Here is the condition to enter the Standby-Mode. DATA pin is keeping high and low more than t_{SMOT} . (refer to Table 4-1)

Figure 4-1. Standby-Mode Waveform

DATA : Serial Data

standby_en : Internal OSC Standby Enable Signal

Internal Oscillator : 1MHz Oscillator for internal logic

Algorithm License Permission Unit

Table 4-1. Standby-Mode Waveform Parameters (The basic frequency 1MHz)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit				
Standby-Mode on Time	t _{SMOT(2)}	128		1024-	Ms				
Ready	t _{READY}	t_{READY} period is finished when the DATA is transited							
OSC on Time	t _{OSCON}	10	50	-	us				
OSC Off Time	t _{OSCOFF}			1	us				

Note : (2) refer to chapter 4.3 standby-Mode on time set

4.2 Active-Mode

Ina Standby-Mode, cross the DATA pin from high to low or from low to high, then it will wake-up.

4.3 Standby-Mode on time set

Initially t_{SMOT} is set at 128ms. But t_{SMOT} can be modified only once by customer's requirement such as one of Table 4-2 the Standby-Mode. Contact with NEOWINE if customer want to change other type on the Table 4-2 the Standby-Mode on time.

Table 4-2 Standby-Mode on Time

Standby Mode on time select	Standby-Mode on time						
Standby-Wode on time select	MIN	ТҮР	MAX				
0	-	1,024	-				
1	-	512	-				
2	-	256	-				
3	-	128	-				

Unit : ms

5 Initialization

ALPU-P has an internal POR circuit, POR is not necessary extern reset separately.(refer to Figure 5-1_

5.1 Start-up Waveform

ALPU-P

Algorithm License Permission Unit

Figure 5-1. Start-up Waveform

VDD : Supplied power

POR : Internal Power On Reset Signal

register : Internal registers for initialization

 Table 5-1.
 Start-up Timing Parameters.

Parameter	Symbol	Min	Тур	Max	Unit			
Threshold Voltage	V _{Threshold}	1.26			V			
POR Reset Time	t _{RESET_P}	30			us			
Chip Ready	t _{READY}	t _{READY} peri	period is finished when the DATA is transited.					
Initial Time	t _{INITIAL}	250			us			

5.2 Internal Power On Reset

A POR pulse is generated by on chip detection circuit. The detection level is defined in Table 5-1. The POR is activated whenever DATA is lower than the detection $level(V_{Threshold})$. Reaching the POR $V_{Threshold}$ invoke the delay counter, which has the some reset time(t_{RESET_P}). t_{RESET_P} period is finished when the DATA is transited.

6 Encryption

6.1 Encryption Core Block Diagram

ALPU-P

Algorithm License Permission Unit

Figure 6-1. Encryption Core Block Diagram

ALPU-P is 128 bits encryption core applied with AES128. The core consists of several block which are AES128 core, Random Counter, Feedback Buffers and Encryption Parameter.

6.2 Encryption Configured with sub-address

Encryption core is configured with sub-address as shown in figure 6-1.

Figure 6-2. Sub-Address Configuration

bit 7 : EE (Encryption Enable)

When EE bit is set '1', it is in encryption mode.

- bit 6 : Fixed '0'
- bit 5 : fixed '1'
- bit 4 : (Feedback Enable)

When both EE and FE bit are set to '1', it is in feedback mode

bit 3 : RE(Hash Enable)

When both EE and RE bit are set to '1', it is pseudo Hash Counter.

bit 2~0 : EW (Encryption Width)

The EW bits are loop count numbers of the encryption algorithm.

6.3 Encryption Mode

Figure 6-3. Bypass mode sub-address Construction

Algorithm License Permission Unit

6.3.1 Bypass Encryption Mode

Bypass is a mode to test the communication interface between MCU and ALPU-P. The data(Xn) from MCU will do Exclusive-OR operation with 0x01 in ALPU-P.

6.3.2 Feedback Encryption

It is not able to open this information

6.3.3 Hash Counter Mode

It is not able to open this information

6.4 Encryption Flow

Figure 6-4. Encryption Flow

ALPU-P

Algorithm License Permission Unit

7 Communication Packet Structure

7.1 Write Packet Structure

Figure 7-1. Write packet structure

AWU : ART Wake-up

ART : Adaptive Reference Time

SP : Start Preamble

EP : End Preamble

D/A(W) : Device Address(Write)

S/A: Sub-Address

Xn_data0~3 : 4 Bytes Write Data(Plain-Text)

7.2 Read Packet Structure

AWU : ART Wake-up

SP : Start Preamble EP : End Preamble

S/A: Sub-Address

7.3 Implementation

7.3.1 Bypass Mode

ART : Adaptive Reference Time

D/A(W) : Device Address(Write) D/A(R) : Device Address(Read)

Yn_data0~5: 6 Bytes Read Data(Cipher-Text)

AWU	ART	SP	D/A (W)	S/A	Sr	D/A (R)	Yn_data 0	Yn_data 1	Yn_data 2	Yn_data 3	Yn_data 4	Yn_data 5	EP

Figure 7-2. Read packet structure

www.neowine.com

Neowine

ALPU-P

Algorithm License Permission Unit

Figure 7-3. Bypass Mode example C code

- 1. Generated plain-text with the hash data
- 2. Write plain-text to ALPU-P
- 3. Read cipher-text from ALPU-P
- 4. Compare the encrypted data and received data

8 OTP (One Time Programmable) ROM

ALPU-P has 256 bits OTP memory. It can be programmed through ART 1-Line Interface. User give the DC power 6.5V to ALPU-P's OTP pin during the OTP write. User can write 64 bits OTP area except 192 bits OTP area.

Figure 8-1. OTP Memory Map

8.1 Definition of timing(OTP Read of User Area)

Algorithm License Permission Unit

Figure 8-2 shows the OTP access signal reading data from ALPU-P. The t_{OTP_READ} time is necessary in accessing data.

Figure 8-2. OTP Access Signal

Table 8-1. OTP Access Timing

		Comm	Speed		
Parameter	Symbol				Unit
		Min	Тур	Max	
ART One Bit Time	t _{BIT}	200	100	50	us
Half to Bit Time	t_{BIT_HALF}	100	50	25	us
OTP Access Time	t _{OTP_READ}		10		us

9 Communication Interface

9.1 ART 1-Line Interface

ART 1-Line communication is suitable to be applied in MCU. It operates as slave, and can be

ALPU-P

Algorithm License Permission Unit

available 128 different device with just one MCU GPIO pin when ART protocol applied. 128 device must have different device address each other, and pull-up resistor is required on the data line. ART 1-Line interface is the format which NEOWINE is originative, and it is possible to support the speed from 5kbps to 20kbps.

9.1.1 Write packet structure

AWU	ART	T SP		D/A(W)			S/A	
Xn_	data 0	Xn_data 1		>	Xn_data 2		Kn_data 3	EP

Figure 9-1. Write packet structure

AWU : ART wake-up

ART : Adaptive Reference Time

SP : Start Preamble

D/A(W) : Device Address(Write)

S/A : Sub-Address

Xn_data 0~3 : Write Data(Plain-text)

EP : End Preamble

9.1.2 Read packet structure

AWU		ART		SP		D/A(W)		S/A		Sr		D/A(R)	
	Yn_	_data 0	Y	'n_data 1	Y	/n_data 2	٢	/n_data 3	Y	′n_data 4	Y	'n_data 5	EP

Figure 9-2. Read packet structure

AWU : ART wake-up

ART : Adaptive Reference Time

SP : Start Preamble

D/A(W) : Device Address(Write)

Sr : Repeated Start

D/A(R) : Device Address(Read)

S/A: Sub-Address

Xn_data 0~3 : Write Data(Plain-text)

EP : End Preamble

Algorithm License Permission Unit

9.1.3 Start Preamble Structure

Figure 9-3 shows the START PREAMBLE structure of ALPU-P. ALPU-P transmits true(1) value for acknowledge, if the ALPU-P receive a correct START PREAMBLE.

Figure 9-3. Start Preamble Structure

9.1.4 Byte Structure

Figure 9-4 shows the byte structure of write data. ALPU-P transmits true(1) value every 4 bits for acknowledge.

Figure 9-4. Write Byte Structure

Figure 9-5 shown the byte structure of read data. MCU should transmit sync signal, High, to ALPU-P after receiving 4 bits data from ALPU-P.

Figure 9-5. Read byte packet

9.1.5 Waveform

Figure 9-6 shown the Write/Read waveform.

ALPU-P

Algorithm License Permission Unit

Figure 9-6. ART 1-Line Waveform

9.1.6 Definition of Timing

Figure 9-7. Definition of Timing

 Table 9-1. ART Timing Parameters.

Parameter	Symbol	Rate	Commu	Unit		
			Min	Тур	Max	
Communication Speed		-	5	10	20	kbps
ART Wake Up Time	t _{AWU}	-	30	50	100	us
Adaptive Reference High Time	t _{REFH}	t	800	400	200	us

www.neowine.com

Algorithm License Permission Unit

Adaptive Reference Low Time	t _{REFL}	t	800	400	200	us
Start Preamble High Time(Start)	t _{SPH}	t	800	400	200	us
Start Preamble Low Time(Start)	t _{SPL}	t	800	400	200	us
Start Preamble Ack	t _{SPA}	t/4	200	100	50	us
ART One Bit Time	t _{BIT}	t/4	200	100	50	us
Half to Bit Time	t _{CODE}	t/8	100	50	25	us
End Preamble (Stop)	t _{EP}	2t	1600	800	400	us
Encryption Time	t _{ENC}	-		1000		us

10 Electrical Characteristic

10.1 Absolute Maximum Rating (Reference to VSS)

```
Supply Voltage : 5.5V

All other pins : -0.5V to DATA + 0.5V

ESD Rating

HBM(1) : 2000V

MM(2) : 200V

CDM(3) : 800V

Note : (1) HBM(Human Body Model), (2) MM(Machine Model), (3) CDM(Changed Device

Model)
```

10.2 Recommended Operating Condition

Ambient temperature rand : TBD

10.3 DC Characteristic

Table 10-1.	DC Characteristic
-------------	-------------------

Algorithm License Permission Unit

DC Characteristics						
Supply Voltage	V _{DD}	During normal operation	3.0	3.3	3.6	V
Active-Mode supply current (exclude I/O current)	I _{DD}	DATA=3.3V		250		uA
Standby mode supply current	I _{DDS}	DATA pin stay high or low more than Standby on time			1	uA
OTP programming mode supply current	I _{DDP}	For ~ 1ms duration per write operation	-	-	256	uA
Internal OTP programming voltage	V _{PP}	Observable only in OTP write	6.25	6.5	6.75	V
POR Release Threshold	V _{POR+}		1.32			V
POR Assertion Threshold	V _{POR-}		1.26			V
DATA Pin Characteristics						•
DATA Input Low Voltage	V _{IL}		-0.4		0.5	V
DATA Input High Voltage	V _{IH}		1.5		V _{DD} +0.4	v
DATA Internal Pull-up Current	I _{PU}	DATA = 3.3V			1	uA
DATA Output Low Voltage	V _{OL}	I _{OL} = mA			0.4	V
DATA Output Fall Time	t _F	90% to 10%, C _{LOAD} = 12pF			5	ns
DATA Capacitance	C _{PIN}			6		pF

11 Typical Operation Circuit

11.1 ALPU-P Operation Circuit

Algorithm License Permission Unit

Figure 11-1. Operation Circuit

Algorithm License Permission Unit

12 Package Information

12.1 POD-TDFN-8L 2mm x 3mm

ALPU-P

Algorithm License Permission Unit

NEOWINE Co., Ltd.

http://www.neowine.com info@neowine.com TEL :+82-31-706-8484 FAX :+82-31-706-8485 #401, 182, Pangyoyeok-ro, Bundang-gu, Seongnam-City, Gyeonggi-DO, KOREA 13524