
Features

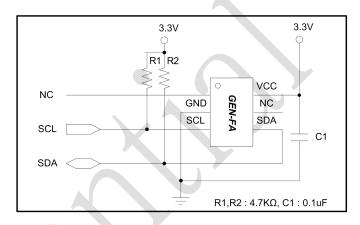
- User programmable copy protection IC
- 32 Kbits EEPROM, Retention(10 years)
- Erase/Write Endurance: 100K@25°C
- Support AES128 encryption and decryption SHA256/AES128 Authentication
- User ID, User Serial, MIDR, RVC
- 3.3V Operation Voltage, I2C I/F
- Built- in Power on Reset and 8 MHz OSC.
- Active, Sleep Power Mode

Applications

- Print cartridge, GPS, Navigation
- Mobile Device, IPC, CCTV, DVD
- Set-Top Boxes (STBs), Etc.

Pin Configuration

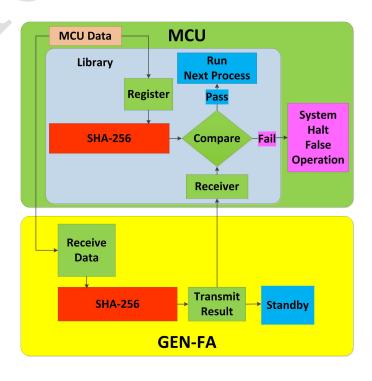
<SOT-23-6L Package>


• SOP8 packages will be available.

General Description

The GEN -FA has 32 Kbits EEPROM. A configurat ion data and user data can be saved at the EEPRO M. The data is protected by password and encryptio n. The GEN has SHA-256 core. SHA-256 is used f or a authentication. It is a slave device that always

operates with MCU through the serial bus. The GEN has internal 8 MHz clock. When MCU does not access the GEN for a defined time, The GEN goes to sleep mode. The 8MHz OSC does not oscillate for sleep mode.


Typical Operation Circuit

< SOT-23-6L Package Type >

SCL and SDA is open drain. SDA is bi-directional port.

SHA256 Authentication Flow

Contents

<u>1. Overview</u>	3
2. I/O Port	5
3. Clock Management	7
4. Power Mode	7
5. Initialization	8
6. Encryption	9
7. EEPROM	13
3. Communication Interface	13
9. Electrical Characteristic	16
0. Typical Operation Circuit	18
1. Package Information	19
2. Datasheet Revision History	20

1. Overview

The GEN-FA has 32 Kbits EEPROM. A configuration data and user data can be s aved at the EEPROM. The data is protected by password and encryption. The GEN has SHA-256 core. SHA-256 is used for a authentication. It is a slave device that always operates with MCU through the serial bus. The GEN has internal 8 MHz cl ock. When MCU does not access the GEN for a defined time, The GEN goes to sleep mode. The 8MHz OSC does not oscillate for sleep mode.

1.1. Features

1.1.1 Security

- User programmable copy protection IC
- 32 Kbits EEPROM, Retention(10 years)
- Erase/Write Endurance: 100K
- Standard AES-128 encryption and decryption
- SHA-256/AES-128 Authentication
- User ID, User Serial, MIDR, RVC
- 3.3V Operation Voltage, I2C I/F
- Built- in Power on Reset and 8 MHz OSC.
- Active, Sleep Power Mode

1.1.2 Memories

- 32 Kbits EEPROM
- Configuration Data Region: 2.56 Kbits
- User Data Region : 30.208 Kbits

1.1.3 Peripheral Features

• IIC serial interface, Supporting up to 400 kbps

1.1.4 Special Features

- Built in Power-on-Reset
- Built in 8MHz selectable OSC
- Two Power Modes: Active, Sleep

1.1.5 Operating Voltages

• 3.3V Operation Voltage

1.1.6 Package

• SOT23-6L

1.2. Block Diagram

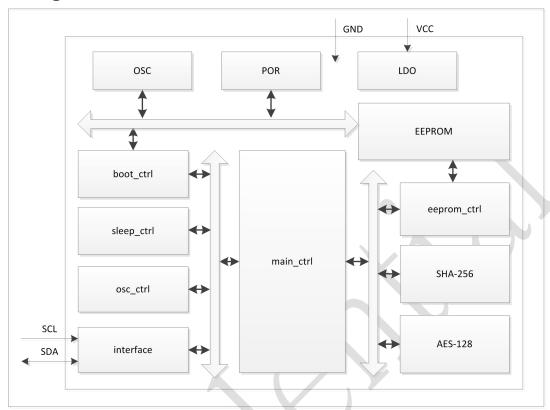


Figure 1-1. Block Diagram

GEN-FA consists of analog blocks (OSC, POR and LDO) and a memory block and digital logic ones. The boot control block manages the signals of analog blocks. An d the main control block manages the communications between the digital blocks th rough two buses.

1.3. Pin Configurations

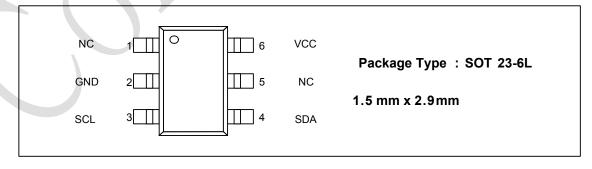


Figure 1-2. GEN-FA Pin Configuration of SOT23-6L

www.neowine.com 4/18 GEN-FA Datasheet Ver 1.0

1.4. Pin Descriptions

Table 1-1. GEN-FA Pin Description of SOT-23-6L

Pin Num	Pin Name	Description	Remark
1	NC	None Connected	
2	GND	Ground	
3	SCL	IIC Serial Clock input pin. CMOS Input	
4	SDA	IIC Serial Data, CMOS Input / Open-Drain Outp	
4	SDA	ut bi-directional I/O	
5	NC	None Connected	
6	VCC (1)	Digital supply voltage	

Note (1) The GEN-FA operation voltage is supported by 3.3V

2. I/O Port

2.1 ESD protection circuit

ESD protection circuit for the whole chip is achieved as shown in Figure 2-1. It can be protected the chip against two widely used industry standard ESD test models: Human Body Model (HBM) and Machine Model (MM). Both of these models test each pin against every other pin and/or a power/ground supply using a positive and a negative pulse.

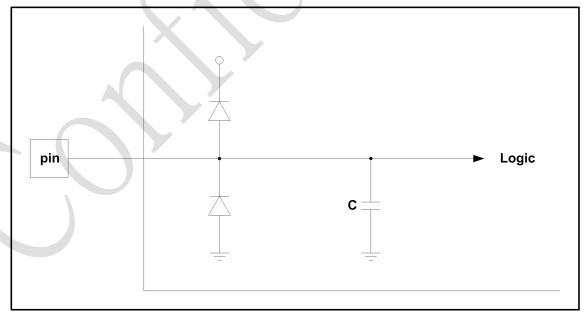


Figure 2-1. ESD protection circuit

2.2 I/O type

GEN-FA has I/O types as shown in Table2-1.

www.neowine.com 5/18 GEN-FA Datasheet Ver 1.0

Table 2-1. I/O Types

Direction	Name	Description
	VCC	Digital supply voltage
	GND	Ground
Bi-direction Port	SDA	IIC Serial Data bi-direction pin
Input Port	SCL	IIC Serial Clock input pin

2.2.1 Input Port (SCL)

The Input cell is an input buffer with CMOS input.

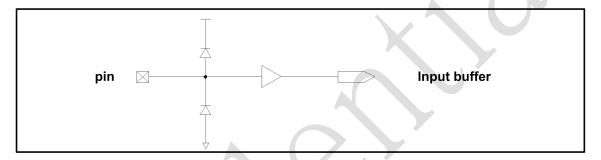


Figure 2-2. Input port Schematic

2.2.3 Bi-direction Port (SDA)

This cell is a bidirectional buffer with CMOS input and 2mA n-channel open drain output.

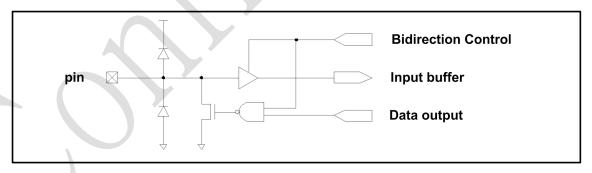


Figure 2-4. Bi-direction port Schematic

www.neowine.com 6/18 GEN-FA Datasheet Ver 1.0

3. Clock Management

3.1 Internal clock

All Inner blocks use internal OSC clock. EEPROM can select OSC clock between 4 MHz and 8MHz. Internal OSC clock is approximately 8MHz shown in Table3-1.

Table 3-1. Internal OSC parameters (Ta = 25°C)

PARAMETER	SYMBOL	CONDITION	Min	Тур	Max	Unit
Frequency	f8m		7	8	9	MHz
Frequency Variatio	Δf8m	-40≤Ta≤80°C	- 0	- (±10	%
n						
Duty Cycle	Dmax		48	50	52	%

3.1.1 Clock on/off

Internal OSC clock can be turned on or off. If GEN-FA is in the condition of Slee p-mode, then internal OSC clock is turned off to save the power.

Here is the condition to enter the Sleep-mode. SCL and SDA pins both stay high and all functions are disabled specific time duration. This time can be from 4.096m s to 33 seconds in a 4.096ms time step. MCU can change this time duration with c hanging related register values. When the conditions above are not met it wakes u p to active-mode. (Refer to chapter 4. Power Mode)

4. Power Mode

GEN-FA supports the power saving mode called Sleep-mode in which internal oscillator is off.

4.1 Condition of entering Sleep-mode

Here is the condition to enter the Sleep-mode. SCL and SDA pins both stay high and all functions are disabled for specific time duration. This time can be from 4.0 96ms to 33 seconds in a 4.096ms time step. MCU can change this time duration with changing related register values. (Refer to Figure 4-1)

www.neowine.com 7/18 GEN-FA Datasheet Ver 1.0

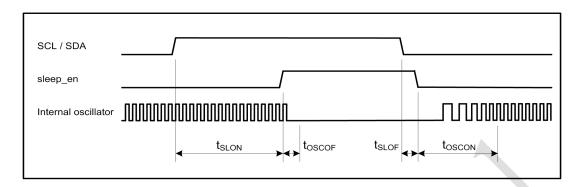


Figure 4-1. Sleep-mode Waveform

SCL/SDA: IIC signal

sleep_en: internal sleep-enable signal

Internal oscillator: 8MHz oscillator for internal logic

Table 4-1. Sleep-mode Waveform Parameters

Parameter	Symbol	MIN	TYP	MAX	Unit
Sleep-mode On Time	t _{SLON}	4.096		33000	ms
Sleep-mode Off Time	t _{SLOF}			10	ns
OSC On Time	toscon			5	us
OSC Off Time	toscof			10	ns

4.2 Condition of exiting Sleep-mode

When the conditions are not met it wakes up to active-mode; Either SCL or SDA line goes down to low.

5. Initialization

GEN-FA has an internal POR (Power-on-Reset) circuit. When system power turns on GEN-FA's POR resets its own system. During reset time, all internal registers of GEN-FA are configured as their initial values. (Refer to chapter 9. Electrical Characteristic)

5.1 Start-up Waveform

After RESET, internal registers in GEN-FA need $t_{\rm INITIAL}$ time period to initialize all registers. After $t_{\rm INITIAL}$ time period GEN-FA's sleep time value can be changed by MCU. After Power On RESET the sleep time value is 33 seconds.

www.neowine.com 8/18 GEN-FA Datasheet Ver 1.0

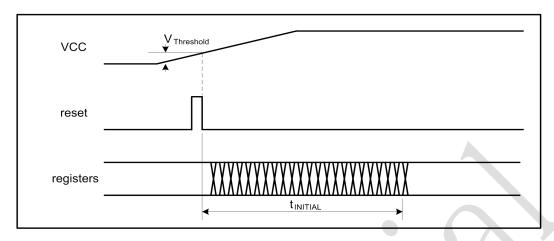


Figure 5-1. Start-up Waveform

VCC: 3.3V Supplied Power

reset : internal Power-on-Reset signal

registers: internal registers for initialization

Table 5-1. Start-up Timing Parameters

Parameter	Symbol	MIN	TYP	MAX	Unit
Threshold Voltage	$V_{Threshold}$	1.1	1.2	1.3	V
Initial Time	t _{INITIAL}			14	ms

VCC information (Refer to chapter 10. Electrical Characteristic)

5.2 Internal Power-on-Reset

A Power-on-Reset (POR) pulse is generated by an On-chip detection circuit. The detection level is defined in Table5-1. The POR is activated whenever VCC is below the detection level (threshold voltage). The POR circuit ensures that the device is reset from Power-on. Reaching the POR threshold voltage invokes the delay counter, which determines how long the device is kept in RESET after VCC rise.

6. EEPROM

GEN-FA has 32 Kbits EEPROM memory. The memory write and read instructions are achieved through IIC interface. Refer to Application Notes

7. Communication Interface

7.1 IIC interface (Two Wire Interface)

www.neowine.com 9/18 GEN-FA Datasheet Ver 1.0

The IIC Interface is ideally suited for typical microcontroller applications. The IIC protocol allows the systems designer to interconnect up to 128 different devices u sing only two bus lines, one for clock (SCL) and one for data (SDA). The only ext ernal hardware needed to implement the bus is a single pull-up resistor for each of the TWI bus lines. All devices connected to the bus have individual addresses.

GEN-FA operates as a slave device on the IIC bus. IIC interface on GEN-FA is c ompatible with Phillips Format, supporting up to 400 Kbps

7.1.1 Write Packet Structure

Figure 7-1. Write Packet Structure

S: Start

D/A: Device Address (Slave Address) 7bit

W: Device Address Write bit (0)

A: Acknowledge

S/A0, S/A1: Sub Address, S/A0(MSB 8bits of 16bits Address), S/A1(LSB 8bits of 16bits Address)

Data 0~n: Write Data

P: Stop

7.1.2 Read Packet Structure

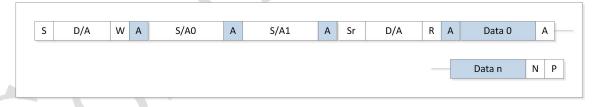


Figure 7-2. Read Packet Structure

S: Start

D/A: Device Address (Slave Address) 7bit

W: Device Address Write bit (0)

A: Acknowledge

S/A0,S/A1: Sub Address, S/A0(MSB 8bits of 16bits Address), S/A1(LSB 8bits of 16bits Address)

Sr: Repeated Start (Non-Stop)
R: Device Address Read bit (1)

www.neowine.com 10/18 GEN-FA Datasheet Ver 1.0

Data 0~n: Read Data N : No Acknowledge

P: Stop

7.1.3 Waveform

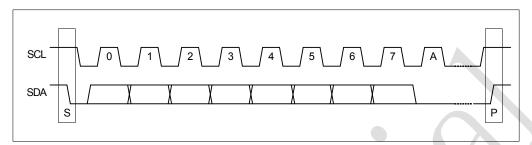


Figure 7-3. IIC waveform

7.1.4 Definition of timing

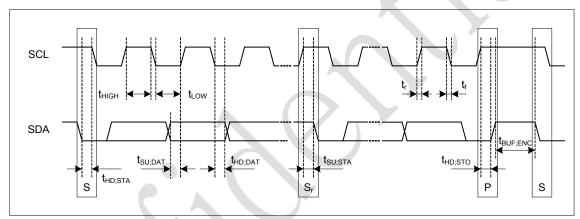


Figure 7-4. Definition of timing

Table 7-1. IIC Timing Parameters

		Standard-Mod		Fast-Mode		
Parameter	Symbol	•	9			Unit
		MIN	MAX	MIN	MAX	
SCL clock frequency	f_{SCL}	0	100	0	400	KHz
Hold time (repeated) START	t _{HD;STA}	4.0	_	0.6	_	us
condition.						
LOW period of the SCL clock	$t_{ m LOW}$	4.7	_	1.3	_	us
HIGH period of the SCL clock	t _{HIGH}	4.0	_	0.6	_	us
Setup time for repeated STA	t _{SU;STA}	4.7	_	0.6	_	us
RT condition						
Data hold time	t _{HD;DAT}	5.0	_	_	_	us
Data setup time	$t_{\mathrm{SU;DAT}}$	250	_	100	_	ns

www.neowine.com 11/18 GEN-FA Datasheet Ver 1.0

Rising time of both SDA and	t _r	-	1000	20	300	ns
SCL signals						
Falling time of both SDA and	t _f	_	300	20	300	ns
SCL signals						
Setup time of STOP condition	t _{SU;STO}	4.0	1	0.6	_	us
Bus free time between STOP	t _{BUF;ENC} (1)	1	1	1	_	ms
and START condition						

Note (1) It need for encryption processing time.

www.neowine.com 12/18 GEN-FA Datasheet Ver 1.0

8. Electrical Characteristic

8.1 Absolute Maximum Ratings

Table 8-1. Absolute Maximum Ratings

Parameter	Min	Max	Units
Supply Voltage	2.7	6.0	V
Storage Temperature	-35	120	°C
ESD Susceptibility	2000		V
DC Current VCC and GND		3	mA

Note. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied.

8.2 Recommended Operating Conditions

Table 8-2. Recommended Operation Conditions

Parameter	Min	Max	Units
Operating Temperature	-30	80	°C
Operating Voltage	3.0	3.6	V

8.3 DC Characteristics

Table 8-3. DC Specifications 3.3V I/O

Symbol	Parameter	Condition	Min	Тур	Max
V_{IL}	Input Low Voltage				0.8V
V _{IH}	Input High Voltage		2.0V		
I_{I}	Input Leakage	VCC = MIN			1uA
	Current	V_{IN} =GND or 3.6V			
V _{OL}	Output Low Voltage	$I_{OL} = 2mA$			0.4V
V _{OH}	Output High Voltage	$I_{OH} = 2mA$	2.4V		3.6V

Table 8-4. Supply Current

Symbol	Parameter	Condition	Min	Тур	Max
т	VCC Complex Comment	Active 8MHz, VCC=3.3V		500uA ⁽¹⁾	
I _{VCC} VCC Supply Current	Sleep mode		90uA ⁽²⁾		

www.neowine.com 13/18 GEN-FA Datasheet Ver 1.0

Note (1) TBD. (2) TBD.

8.4 Internal IP

Table 8-5. Internal Oscillator (Ta = 25°C)

Symbol	Parameter	Condition	Min	Тур	Max
fOSC	Switching Frequency		7MHz	8MHz	9MHz
Δf_{OSC}	Frequency Variation	-40≤Ta≤80°C	_		±10 %
Dmax	Duty Cycle		48%	50%	52%

Note $^{(1)}$ When the ring voltage is 3.3V (typical), CMOS voltage level and LVTTL v oltage level are the same.

Table 8-6. Power-on-Reset

Symbol	Parameter	Condition	Min	Тур	Max
Vt	Threshold Voltage	A	1.1 V	1.2V	1.3V
t _{RINIT}	Register Initial time				160 us

Table 8-7. EEPROM cell

Symbol	Parameter	Condition	Min	Тур	Max
I _{VDD_R}	Read Current VDD				128uA
					(32bits)
I_{VPP_R}	Read Current VPP				704uA
					(32bits)
I_{VDD_P}	Program Current VDD				<1uA
I _{VPP_P}	Program Current VPP				600uA
					(for 1bi
					t)
I _{VDD_SB}	Standby Current VDD				<1uA
I _{VPP_SB}	Standby Current VPP				<1uA
V_{PP}	Program VPP Voltage		6.25V	6.5V	6.75V

Note. No active current at sleep mode thus $I_{VDD_SB \text{ and}} I_{VPP_SB}$ is dependent on device leakage current.

9. Typical Operation Circuit

www.neowine.com 14/18 GEN-FA Datasheet Ver 1.0

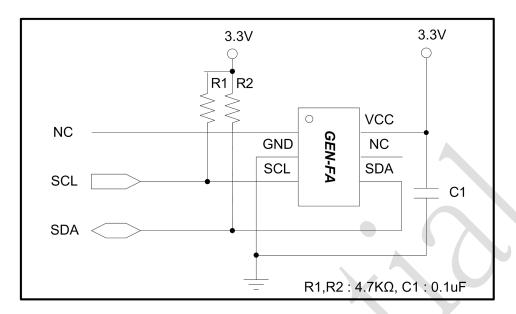


Figure 9-1. GEN-FA Operation Circuit

R1, R2 : $2K \sim 10K$ ohm (TYP. 4.7K ohm)

C1: 0.1uF

www.neowine.com 15/18 GEN-FA Datasheet Ver 1.0

10. Package Information

10.1 POD - 6L-SOT23

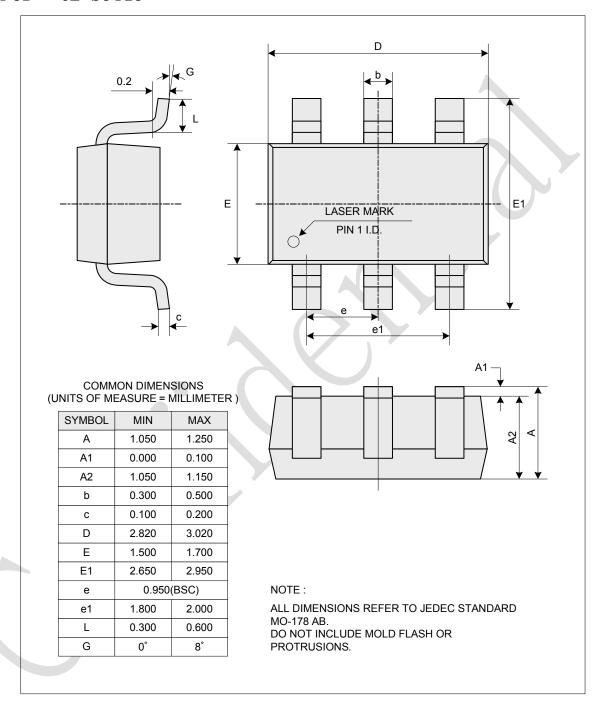


Figure 10-1. 6L-SOT23 Package Outline Dimension

www.neowine.com 16/18 GEN-FA Datasheet Ver 1.0

11. Datasheet Revision History

11.1 Ver 1.0 (2015/10/28)

- Initial version release.

www.neowine.com 17/18 GEN-FA Datasheet Ver 1.0

NEOWINE Co., Ltd.

http://www.neowine.com

Headquarters

#401, 182, Pangyoyeok-ro, Bundang-gu, Seongnam-si, Gyeonggi-do,

Korea 463-400

Tel: 82-31-706-8484 Fax: 82-31-706-8485

info@neowine.com

China Office

上海:徐汇区中山西路1788弄58号302室

深圳:宝安区宝安大道4018号华丰国际商务大厦806

Tel: 86-21-6278-2288(ext 221) Fax: 86-21-6278-3723

alpu-china@neowine.com

www.neowine.com 18/18 GEN-FA Datasheet Ver 1.0